Study: ML Algorithm Helps Detect Traumatic Intracranial Hemorrhage using Prehospital Data

Study: ML Algorithm Helps Detect Traumatic Intracranial Hemorrhage using Prehospital Data

A machine learning algorithm can accurately detect traumatic intracranial hemorrhage using information collected before patients reach the hospital, according to a study published in JAMA Network Open. The study analyzed electronic health records from 2,123 patients with head trauma who were transported to Tokyo Medical and Dental University Hospital from April 1, 2018, to March 31, 2021. "The results suggest that our proposed prediction models may be useful for constructing a triage system that can be used to assess the optimal institution to which a patient with a head injury should be transported. "As the functional outcomes of patients with head injury worsen when their transportation is delayed, the transport time in step three should be reduced by constructing a reliable field triage tool," the researchers wrote. "Because this was a single-center study and included only patients who were hospitalized and underwent head CT, our data set may not represent the general population of patients with head trauma," they wrote.




Next Article

Did you find this useful?

Medigy Innovation Network

Connecting innovation decision makers to authoritative information, institutions, people and insights.

Medigy Logo

The latest News, Insights & Events

Medigy accurately delivers healthcare and technology information, news and insight from around the world.

The best products, services & solutions

Medigy surfaces the world's best crowdsourced health tech offerings with social interactions and peer reviews.


© 2024 Netspective Foundation, Inc. All Rights Reserved.

Built on Nov 21, 2024 at 6:20am